Bootcamp Machine Learning

Você aprenderá a identificar oportunidades de uso e como aplicar técnicas de machine learning (ML) para descobrir padrões em seus próprios dados, construir modelos preditivos para estimar alguma variável de interesse em função dos demais dados disponíveis e melhorar a compreensão do fenômeno subjacente à geração dos dados, para apoio a decisão e otimização de resultados.

Icone presencial

Remoto

130h

Carga horária

Quem pode se inscrever?

Servidores públicos federais que atuem diretamente com análise de dados e queiram adquirir conhecimentos em machine learning e que tenham Licença Capacitação para usufruir.

  • O curso é em formato de licença capacitação, com duração de um mês (30 dias).
  • PRÉ-REQUISITOS: Possuir conhecimento intermediário em língua inglesa, em linguagem Python e Pandas e ter sido aprovado no processo seletivo.
  • PROCESSO SELETIVO

Acontece por etapas. Os testes têm como objetivo identificar e selecionar aquelas pessoas motivadas e comprometidas com a experiência intensiva e imersiva em programação (mas também dinâmica e divertida).

Inscrições Encerradas

Saiba mais em https://enap.gov.br/pt/cursos/coding-bootcamp/machine-learning

Objetivos

O objetivo deste curso é ensinar os fundamentos de machine learning (ML, ou aprendizado de máquina) em que, em vez do programador descrever explicitamente os procedimentos a serem realizados para se criar o resultado esperado, são fornecidos exemplos de resultados e o próprio algoritmo de aprendizado mapeia o padrão de relações entre os dados de entrada e o resultado esperado, realizando assim previsões para novos casos ainda não encontrados. Por exemplo, dispondo de dados de desempenho passado de alunos no Enem, e de metadados que descrevem esses alunos, é possível treinar um modelo para prever o desempenho esperado de futuros alunos, permitindo conceber intervenções personalizadas e suportar decisões apoiadas em dados.

O QUE VOCÊ IRÁ APRENDER
Aprenda a identificar oportunidades de uso e aplicação das melhores técnicas de ML para descobrir padrões em seus próprios dados. Construa modelos preditivos para estimar cenários. Melhore a compreensão do seu problema e construa soluções baseado em evidências.

Metodologia

Estrutura do curso remoto com interação ao vivo:

i) Atividades síncronas (Zoom): aulas ao vivo online expositivas dialogadas.

O curso será desenvolvido por meio de alternância entre conteúdos expositivos curtos, exercícios com codificação para consolidar o domínio das técnicas apresentadas e aplicações em novos conjuntos de dados, de forma guiada, para facilitar a experimentação das técnicas sobre dados reais e o ganho de autonomia da/o aluna/o.

Em momento oportuno, as/os alunas/os matriculadas/os receberão por e-mail as orientações detalhadas sobre o acesso às plataformas virtuais.

Principais tópicos

1. Diferenças entre programação tradicional e aprendizado de máquina (ML): O desafio de prever resultados de um fenômeno sem um modelo explícito de seu funcionamento.

2. Categorias de machine learning (ML): Supervisionado, não supervisionado e por reforço.

3. Diversidade de aplicações.

4. Desafio: estimativa de preço de imóveis em função de suas características.

5. Regressão linear: o Intuição, cenários de uso. o Preparação de dados para modelização. o Uso da biblioteca python scikit-learn.

6. Conceitos gerais de ML, aplicados ao caso básico de regressão linear: o particionamento dos dados em treinamento/teste/validação; o Over e under fitting; o Determinantes de desempenho: mais dados, controle de complexidade do modelo, regularização, data augmentation; otimização e gradiente descendente.

7. Regressão logística: Extensão da regressão linear como primeiro classificador.

8. Árvore de decisão: o Construção e interpretação. o Extensão para Random Forest, aplicação sistemática em tarefas de previsão. o Desafio: prever sobreviventes do naufrágio do Titanic.

9. Visão geral de redes neurais: conceito, modelos pré-treinados, aplicações em dados tabulares e processamento de linguagem natural (NLP), com vetorização de palavras e categorias.

  • IMPORTANTE:

Antes de se inscrever, entenda o Processo Seletivo.

Saiba mais em https://enap.gov.br/pt/cursos/coding-bootcamp/machine-learning/processo-seletivo

Nenhuma turma disponível no momento.
Clique ao lado para ser notificado por email quando houver novas turmas Ativar notificações

Outras Informações

  • Docente: Erick Muzart - Graduado em Computação, especializado em Análise de Dados e Deep Learning (DL). 
  • Docente: Fernando Melo - Bacharel em Administração e especializado em Inteligência Artificial pela Johns Hopkins University.
  • Aulas Online:

Período: 30 de setembro a 29 de outubro de 2024.
Horário: 9h – 12h, 14h30 - 17h30

As aulas deste curso são realizadas no horário de Brasília/DF.

Pré-Inscrição: A solicitação de inscrição está disponível no link "Inscrever". A matrícula será confirmada por e-mail.
Dificuldades ou problemas para fazer login ou inscrição pelo Portal do Aluno Enap? Envie mensagem para cse@enap.gov.br.
Dúvidas sobre o curso? Envie mensagem para aperfcarreiras@enap.gov.br.

Cursos relacionados:

Perguntas Frequentes

Ainda com dúvidas? Consulte as perguntas frequentes sobre Cursos